<table>
<thead>
<tr>
<th>Scoring Components</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1 The course covers Newtonian mechanics in depth and provides instruction in kinematics.</td>
<td>3</td>
</tr>
<tr>
<td>SC2 The course covers Newtonian mechanics in depth and provides instruction in Newton’s laws of motion.</td>
<td>3</td>
</tr>
<tr>
<td>SC3 The course covers Newtonian mechanics in depth and provides instruction in work.</td>
<td>3</td>
</tr>
<tr>
<td>SC4 The course covers Newtonian mechanics in depth and provides instruction in energy.</td>
<td>3</td>
</tr>
<tr>
<td>SC5 The course covers Newtonian mechanics in depth and provides instruction in power.</td>
<td>3</td>
</tr>
<tr>
<td>SC6 The course covers Newtonian mechanics in depth and provides instruction in systems of particles.</td>
<td>4</td>
</tr>
<tr>
<td>SC7 The course covers Newtonian mechanics in depth and provides instruction in linear momentum.</td>
<td>4</td>
</tr>
<tr>
<td>SC8 The course covers Newtonian mechanics in depth and provides instruction in circular motion.</td>
<td>4</td>
</tr>
<tr>
<td>SC9 The course covers Newtonian mechanics in depth and provides instruction in rotation.</td>
<td>4</td>
</tr>
<tr>
<td>SC10 The course covers Newtonian mechanics in depth and provides instruction in oscillations.</td>
<td>4</td>
</tr>
<tr>
<td>SC11 The course covers Newtonian mechanics in depth and provides instruction in gravitation.</td>
<td>4</td>
</tr>
<tr>
<td>SC12 Introductory differential and integral calculus are used throughout the course.</td>
<td>2–4</td>
</tr>
<tr>
<td>SC13 The course utilizes guided inquiry and student-centered learning to foster the development of critical thinking skills.</td>
<td>2–3</td>
</tr>
<tr>
<td>SC14 Students spend a minimum of 20% of instructional time engaged in laboratory work.</td>
<td>2</td>
</tr>
<tr>
<td>SC15 A hands-on laboratory component is required.</td>
<td>2</td>
</tr>
<tr>
<td>SC16 Each student should complete a lab notebook or portfolio of lab reports.</td>
<td>2</td>
</tr>
</tbody>
</table>
Text

Course Description
This course is equivalent to a first-year college physics class and designed to prepare students for the AP® Physics C: Mechanics Exam given in May. This course follows the syllabus for that examination, and students passing the exam may receive college credit. The course requires and employs a basic understanding of calculus (differentiation and integration) and requires a prior course, Honors Physics. The prerequisite calculus course may be taken concurrently. [SC12] Typically, four classes per week will be devoted to class work and lecture, and one class per week will be laboratory work. [SC14]

In this course, we will focus on two major activities:

• Discovery of concepts via scientific inquiry and critical thinking skills. Much of the teaching you will do for yourself and for each other. I will provide you with some introduction and background. Then I will assign to you a task, problem, or question (perhaps more than one at a time). You will work individually or in groups, often with hands-on equipment and materials, to complete the task. Often, you will be asked to present your solutions to the class or critique or verify the solutions of others. My hope is that you will see that there can be more than one way to solve the same problem. [SC12]

• Laboratory application of physics knowledge (described below).

Course Evaluation
Your grade will be based on the following:

Exams .. 40%

Homework ... 20%

Laboratory .. 20%

Final .. 20%

Laboratory
Students will work in small groups to perform weekly student-conducted, hands-on laboratory assignments, but each student must write his or her own report. [SC14 & SC15] Students are to keep a portfolio of all laboratory investigations and reports. [SC16] Laboratories are included in the schedule below. Most labs begin as a problem for which the students must propose and develop their own solution. They then conduct an experiment to test their ideas, make observations, and take measurements. Finally, they form conclusions based on their collected measurements, observations, and data and error analysis. [SC13]
Course Planner

Week 1

Topic: Introduction; What is Physics? Units and Measurements
Lab: Scientific Method—Students duplicate and “rediscover” Galileo’s proof of equal acceleration of all falling bodies.

Weeks 2 and 3

Topic: Kinematics in 1D; Kinematics in 2D. [SC1]
Students integrate Force–Displacement graph and determine work. [SC12]
Labs: A Projectile in Motion—Students study range and “hang time” of projectiles using a launcher. They show derivative/integral relationships between position, velocity, and acceleration. [SC13]

Weeks 4 and 5

Topic: Mechanics and Newton’s Laws of Motion [SC2]
Labs: Students will use Atwood’s machine to demonstrate and verify Newton’s first law.
Students will evaluate friction on an incline.

Weeks 6 and 7

Topic: Work and Energy; Conservation of Energy [SC3 & SC4]
Labs: Students will prove transfer of potential to kinetic energy using a launch ramp and steel ball. The lab will tie in to projectile motion.
Students will demonstrate Hooke’s law.
Students will perform “student power” lab using stairs. [SC5]

SC1—The course covers Newtonian mechanics in depth and provides instruction in kinematics.

SC12—Introductory differential and integral calculus are used throughout the course.

SC13—The course utilizes guided inquiry and student-centered learning to foster the development of critical thinking skills.

SC2—The course covers Newtonian mechanics in depth and provides instruction in Newton’s laws of motion.

SC3—The course covers Newtonian mechanics in depth and provides instruction in energy.

SC4—The course covers Newtonian mechanics in depth and provides instruction in power.

SC5—The course covers Newtonian mechanics in depth and provides instruction in power.
Weeks 8 and 9
Topic: Momentum and Collisions; Systems of Particles [SC6 & SC7]
Labs: Students will use Pasco cars to demonstrate conservation of momentum. Students will use Pasco cars to investigate impulse.

Weeks 10, 11, and 12
Topic: Rotational Kinematics, Rotational Dynamics, and Circular Motion [SC8 & SC9]
Labs: Students will use a pulley and weight to investigate moment of inertia. Students will use a pulley and weight to study conservation of angular momentum.

Weeks 13 and 14
Topic: Simple Harmonic Motion [SC10]
Labs: Students will use a spring–mass system to study oscillations. Students will use a motion detector to model oscillations.

Weeks 15 and 16
Topic: Gravitation [SC11]
Labs: Students will do a simple pendulum lab to determine g. Students will use software to model elliptical orbits and use calculus to prove that Kepler’s second law is equivalent to the law of conservation of angular momentum. [SC12]

Weeks 17 and 18
Review and final exam

SC6—The course covers Newtonian mechanics in depth and provides instruction in systems of particles.

SC7—The course covers Newtonian mechanics in depth and provides instruction in linear momentum.

SC8—The course covers Newtonian mechanics in depth and provides instruction in circular motion.

SC9—The course covers Newtonian mechanics in depth and provides instruction in rotation.

SC10—The course covers Newtonian mechanics in depth and provides instruction in oscillations.

SC11—The course covers Newtonian mechanics in depth and provides instruction in gravitation.

SC12—Introductory differential and integral calculus are used throughout the course.